
Brownian motion and Stochastic Calculus
Dylan Possamaï

Assignment 9—solutions

Exercise 1

Let W = (Wt)t≥0 be a 1-dimensional (F,P)–Brownian motion.

1) Prove that for every polynomial p on R, the stochastic integral
∫ ·

0 p(Ws)dWs is well defined. Moreover, show that
it is also an (F,P)-martingale.

2) Show that the process X = (Xt)t≥0 given by Xt := e 1
2 t cos(Wt), t ≥ 0 is an (F,P)-martingale.

3) Let W ′ be another (F,P)–Brownian motion independent of W and ρ be an F-adapted, measurable, process
satisfying |ρ| ≤ 1. Prove that the process B given by

Bt =
∫ t

0
ρsdWs +

∫ t

0

√
1 − ρ2

sdW ′
s

is an (F,P)–Brownian motion. Moreover, compute [B, W ].

1) By linearity, it suffices to check the claim for monomials of the form p(x) = xm, m ∈ N. Note that p(W )
is (left-)continuous and adapted, and hence predictable and locally bounded. Therefore,

∫ ·
0 p(Ws)dWs is

well-defined, and also a local martingale. Moreover, by Fubini’s Theorem, for all T ≥ 0,

EP
[[ ∫ ·

0
p(Ws)dWs

]
T

]
= EP

[ ∫ T

0
W 2m

s d[W ]s
]

= EP
[ ∫ T

0
W 2m

s ds

]
=

∫ T

0
EP[

W 2m
s

]
ds

= EP[W 2m
1 ]

∫ T

0
smds < ∞.

This proves that
∫ ·

0 p(Ws)dWs is a true martingale.

2) The function f : R2 −→ R given by f(t, w) := e 1
2 t cos w is C2 and Xt = f(t, Wt). Moreover

∂f

∂t
(t, w) = 1

2e 1
2 t cos w,

∂f

∂w
(t, w) = −e 1

2 t sin w,
∂2f

∂w2 (t, w) = −e 1
2 t cos w.

Since t (viewed as a process) is of finite variation, Itô’s formula yields

dXt = ∂f

∂t
(t, w)dt + ∂f

∂w
(t, w)dWt + 1

2
∂2f

∂w2 (t, w)d[W ]t = −e 1
2 t sin WtdWt,

so X is a local martingale. Since sup0≤t≤T |Xt| ≤ e 1
2 T for each T ≥ 0, X is a martingale.

3) Being adapted, left-continuous and bounded, ρ and
√

1 − ρ2 are such that the corresponding stochastic
integrals are well-defined. Moreover, for each t ≥ 0, using bi-linearity of [·, ·] and the fact that [W, W ′] = 0
due to independence of W and W ′

[B]t =
[ ∫ ·

0
ρsdWs

]
t

+
[ ∫ ·

0

√
1 − ρ2

sdW ′
s

]
t

=
∫ t

0
ρ2

sds +
∫ t

0
(1 − ρ2

s)ds = t,
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so Lévy’s characterisation of Brownian motion yields that B is a Brownian motion. Finally

[B, W ]t =
∫ t

0
ρsd[W, W ]s =

∫ t

0
ρsds.

Exercise 2

For any M ∈ Mc,loc(R,F,P), define M⋆
t := sup0≤s≤t |Ms|, for t ≥ 0. Prove that for any t ≥ 0 and positive C, K, we

have
P

[
M⋆

t > C
]

≤ 4K

C2 + P
[
[M ]t > K

]
.

Recall that for a stopping time τ and a process (Mt)t≥0 the stopped process is defined by (Mτ
t )t≥0 =

(Mτ∧t)t≥0. For K > 0, we consider the stopping time σK := inf{t > 0 : [M ]t > K}. Since [M ] is continuous,
we have that [M ]t ≤ K for t ≤ σK , and therefore

EP[
[MσK ]∞

]
= EP[

[M ]σK

]
≤ K.

Hence, MσK ∈ M2
c(R,F,P). We can therefore apply Tchebycheff’s and Doob’s inequality (and use that

the constant in Doob’s inequality for fixed p > 1, denoted by Cp, is equal to
(

p
p−1

)p), obtaining that

P
[
(MσK )⋆

t > C
]

≤
EP[

((MσK )⋆
t )2]

C2 ≤
4EP[

(MσK )2
t

]
C2

=
4EP[

[MσK ]t
]

C2 ≤ 4K

C2 .

To obtain the claim, we observe that

{MσK
t ̸= Mt} ⊆ {σK < t} = {[M ]t > K},

which finally implies that

P
[
M⋆

t > C
]

= P
[
M⋆

t > C, σK ≥ t
]

+ P
[
M⋆

t > C, σK < t
]

≤ 4K

C2 + P
[
[M ]t > K

]
.

Exercise 3

Let (Bt)t≥0 be a Brownian motion defined on a probability space (Ω, F ,P). Consider the SDE

dXt =
(√

1 + X2
t + 1

2Xt

)
dt +

√
1 + X2

t dBt, X0 = x ∈ R. (0.1)

1) Show that for any x ∈ R, the SDE defined in (0.1) has a unique strong solution.

2) Show that (Xt)t≥0 defined by Xt := sinh
(
arcsinh x + t + Bt

)
is the unique solution of (0.1).

1) We see that the SDE is of the form

dXt = a(Xt)dt + b(Xt)dBt, X0 = x ∈ R.

where
a(x) :=

√
1 + x2 + x

2 , and b(x) :=
√

1 + x2.

We observe that
sup
x∈R

|b′(x)| = sup
x∈R

∣∣∣∣ x√
1 + x2

∣∣∣∣ ≤ 1,
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as well as
sup
x∈R

|a′(x)| = sup
x∈R

∣∣∣∣ x√
1 + x2

+ 1
2

∣∣∣ ≤ 3
2 .

Thus, from the mean value theorem, we obtain for K := 5
2 that a(·) and b(·) satisfy the Lipschitz condition

|a(y) − a(z)| + |b(y) − b(z)| ≤ K|y − z|, (y, z) ∈ R2.

Moreover, we observe that for any x ∈ R∣∣∣∣√1 + x2 + x

2

∣∣∣∣ ≤
∣∣∣∣1 + |x| + x

2

∣∣∣∣ ≤ 3
2

(
1 + |x|

)
,

∣∣√1 + x2
∣∣ ≤ 1 + |x|.

Thus we get for any x ∈ R the existence of a unique strong solution directly from the lecture notes.

2) We consider the function f(x) := arsinh(x) ∈ C2 (i.e. the inverse function of the hyperbolic sine).
Thus, we obtain that

f ′(x) = 1√
1 + x2

, and f ′′(x) = − x

(1 + x2)3/2 .

Thus, applying Itô’s formula to Yt := f(Xt), we obtain that

dYt = dt + dBt, Y0 = arsinh(x),

which implies that
Xt = sinh(Yt) = sinh

(
arsinh(x + t + Bt)

)
, t ≥ 0.

Exercise 4

Let B be a Brownian motion defined on some filtered probability space (Ω, F ,F,P) satisfying the usual conditions, and
let us fix three constants (a, b, σ) ∈ (0, +∞)3, and an initial value r0 ∈ R. An Ornstein–Uhlenbeck process r satisfies
the following SDE

rt = r0 +
∫ t

0
(a − brs)ds + σBt, t ≥ 0.

1) Show that

rs = e−b(s−t)rt + a
1 − e−b(s−t)

b
+

∫ s

t

e−b(s−u)σdBu, 0 ≤ t ≤ s.

2) Deduce that the P-distribution of rs knowing Ft is Gaussian with mean

m(t, s) := EP[
rs

∣∣FB,P
t

]
= e−b(s−t)rt + a

1 − e−b(s−t)

b
,

and variance
v(t, s) := VarP

[
rs

∣∣FB,P
t

]
= σ2

∫ s

t

e−2b(s−u)du = σ2

2b

(
1 − e−2b(s−t)).

3) Prove the following stochastic Fubini theorem.

Lemma 0.1. Let b and σ be two R-valued measurable and F-adapted processes such that for any t ≥ 0∫ t

0

(
|bs| + |σs|2

)
ds < +∞.

We have for any t ≥ 0∫ t

0
bs

( ∫ s

0
σudBu

)
ds =

( ∫ t

0
σudBu

)( ∫ t

0
bsds

)
−

∫ t

0
σu

( ∫ u

0
bsds

)
dBu.
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Deduce from this that∫ s

t

rudu = 1 − e−b(s−t)

b

(
rt − a

b

)
+ a

b
(s − t) + σ

∫ s

t

1 − e−b(s−u)

b
dBu,

and that the distribution of
∫ s

t
rudu, conditionally on Ft, is Gaussian with

EP
[ ∫ s

t

rudu

∣∣∣∣FB,P
t

]
= 1 − e−b(s−t)

b

(
rt − a

b

)
+ a

b
(s − t),

and
VarP

[ ∫ s

t

rudu

∣∣∣∣FB,P
t

]
= σ2

b2

(
s − t − 2(1 − e−b(s−t))

b
+ 1 − e−2b(s−t)

2b

)
.

4) Finally, prove that the joint distribution, knowing Ft, of the vector (rs,
∫ s

t
rudu) is still Gaussian with mean given

by the vector  e−b(s−t)rt + a
1 − e−b(s−t)

b
1 − e−b(s−t)

b

(
rt − a

b

)
+ a

b
(s − t)

 ,

and covariance matrix
σ2

2b

(
1 − e−2b(s−t)) σ2

(
1 − e−b(s−t)

b2 − 1 − e−2b(s−t)

2b2

)
σ2

(
1 − e−b(s−t)

b2 − 1 − e−2b(s−t)

2b2

)
σ2

b2

(
s − t − 2(1 − e−b(s−t))

b
+ 1 − e−2b(s−t)

2b

)
 .

1) If we define the process X by Xt := ebtrt, for any t ≥ 0, Itô’s formula shows that it satisfies

Xt = r0 +
∫ t

0
ebsads +

∫ t

0
σebsdBs, t ≥ 0.

This implies that for any s ≥ t ≥ 0

Xs − Xt = a

∫ s

t

ebudu + σ

∫ s

t

ebudBu,

and replacing Xs and Xt by their values

rs = e−b(s−t)rt + a
1 − e−b(s−t)

b
+

∫ s

t

e−b(s−u)σdBu.

2) Hence, rs, given FB,P
t , is given as a deterministic function, plus a stochastic integral of a deterministic

function. We know by the lecture notes that the distribution of such a stochastic integral is Gaussian.
We then have

m(t, s) := EP[
rs

∣∣FB,P
t

]
= e−b(s−t)rt + a

1 − e−b(s−t)

b
,

and
v(t, s) := VarP

[
rs

∣∣FB,P
t

]
= σ2

∫ s

t

e−2b(s−u)du = σ2

2b

(
1 − e−2b(s−t)).

3) We apply Itô’s formula for products to obtain( ∫ t

0
σudBu

)( ∫ t

0
bsds

)
=

∫ t

0
σu

( ∫ u

0
bsds

)
dBu +

∫ t

0
bs

( ∫ s

0
σudBu

)
ds,
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from which the result is immediate.

We deduce then that∫ s

t

rudu = 1 − e−b(s−t)

b

(
rt − a

b

)
+ a

b
(s − t) + σ

∫ s

t

1 − e−b(s−u)

b
dBu.

and in particular that the distribution of
∫ s

t
rudu, conditionally on Ft, is Gaussian with

EP
[ ∫ s

t

rudu

∣∣∣∣FB,P
t

]
= 1 − e−b(s−t)

b

(
rt − a

b

)
+ a

b
(s − t),

and
VarP

[ ∫ s

t

rudu

∣∣∣∣FB,P
t

]
= σ2

b2

(
s − t − 2(1 − e−b(s−t))

b
+ 1 − e−2b(s−t)

2b

)
.

4) Concerning the joint distribution, we have for any (λ, ρ) ∈ R2

EP
[
eiλrs+iρ

∫ s

t
rudu

∣∣∣∣FB,P
t

]
= exp

(
iλ

(
e−b(s−t)rt + a

1 − e−b(s−t)

b

)
+ iρ

(
1 − e−b(s−t)

b

(
rt − a

b

)
+ a

b
(s − t)

))
× EP

[
exp

(
iσ

∫ s

t

ρ + (λb − ρ)e−b(s−u)

b
dBu

)∣∣∣∣FB,P
t

]
= exp

(
iλ

(
e−b(s−t)rt + a

1 − e−b(s−t)

b

)
+ iρ

(
1 − e−b(s−t)

b

(
rt − a

b

)
+ a

b
(s − t)

))
× exp

(
− σ2

2b2

∫ s

t

(
ρ + (λb − ρ)e−b(s−u))2du

)
= exp

(
iλ

(
e−b(s−t)rt + a

1 − e−b(s−t)

b

)
+ iρ

(
1 − e−b(s−t)

b

(
rt − a

b

)
+ a

b
(s − t)

))
× exp

(
− σ2

2b2

(
ρ2(s − t) + 2ρ(λb − ρ)1 − e−b(s−t)

b
+ (λb − ρ)2 1 − e−2b(s−t)

2b

))
,

which is the characteristic function of bi-dimensional Gaussian random variable with mean given by the
vector  e−b(s−t)rt + a

1 − e−b(s−t)

b
1 − e−b(s−t)

b

(
rt − a

b

)
+ a

b
(s − t)

 ,

and covariance matrix
σ2

2b

(
1 − e−2b(s−t)) σ2

(
1 − e−b(s−t)

b2 − 1 − e−2b(s−t)

2b2

)
σ2

(
1 − e−b(s−t)

b2 − 1 − e−2b(s−t)

2b2

)
σ2

b2

(
s − t − 2(1 − e−b(s−t))

b
+ 1 − e−2b(s−t)

2b

)
 .

Exercise 5

Let W = (Wt)t≥0 be a Brownian motion defined on some filtered probability space (Ω, F ,F,P) satisfying the usual
conditions. Assume that the filtration F is generated by the Brownian motion W . Consider the Tanaka SDE

dXt = sgn(Xt)dWt, X0 = 0,

where sgn(x) denotes the sign function, i.e., sgn(x) := 1 if x > 0, and sgn(x) = −1 if x ≤ 0.
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1) Show that the Tanaka SDE has no strong solution.

Hint:

– Assume there exists a strong solution and derive a contradiction.
– You can use the following result (Tanaka’s formula): let X be a continuous semimartingale. There exists a

continuous, non-decreasing adapted process (Lt)t≥0 such that

|Xt| − |X0| =
∫ t

0
sgn(Xs)dXs + Lt, t ≥ 0.

Moreover, it can be shown that L is F|X|-adapted.

2) Show that the SDE admits a weak solution.

1) By contradiction, suppose that X has a strong solution. Since X is F adapted we have FX ⊆ F = FW .
Moreover, since sgn(X·) is adapted and left-continuous, X is a continuous local (F,P)-martingale null at
0 with

[X]t =
∫ t

0
(sgn(Xs))2d[W ]t = t.

Therefore, by Lévy’s theorem, X is even an (F,P)–Brownian motion. By definition, we have

Wt =
∫ t

0
(sgn(Xs))2dWs =

∫ t

0
sgn(Xs)dXs.

Using Tanaka’s formula we see that W is adapted to F|X|. Hence, we have FX ⊆ F = FW ⊆ F|X| which is
clearly a contradiction.

2) To find a weak solution let Q be the Wiener measure on the path space Ω = C[0, ∞) and X be the
coordinate process such that X is an (FX ,Q)–Brownian motion. Moreover, let F be the (augmented)
canonical filtration and define W as

W :=
∫ ·

0
sgn(Xs)dXs.

As before, using Lévy’s theorem W is an (F,Q)–Brownian motion. Therefore

sgn(Xt)dWt = (sgn(Xt))2dXt = dXt.
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