Brownian motion and Stochastic Calculus
Dylan Possamai

Assignment 9—solutions

Exercise 1

Let W = (W})>0 be a 1-dimensional (F, P)-Brownian motion.

1) Prove that for every polynomial p on R, the stochastic integral fo p(Ws)dWy is well defined. Moreover, show that
it is also an (F,P)-martingale.

2) Show that the process X = (X;)¢>0 given by X, := ez cos(W;), t > 0 is an (F,P)-martingale.

3) Let W’ be another (F,P)-Brownian motion independent of W and p be an F-adapted, measurable, process
satisfying |p| < 1. Prove that the process B given by

t t
Btz/ pdeS+/ V1= p2dW;
0 0

is an (F,P)-Brownian motion. Moreover, compute [B, W].

1) By linearity, it suffices to check the claim for monomials of the form p(z) = 2™, m € N. Note that p(WW)
is (left-)continuous and adapted, and hence predictable and locally bounded. Therefore, fo p(W,)dWy is
well-defined, and also a local martingale. Moreover, by Fubini’s Theorem, for all T > 0,
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This proves that fo p(W,)dWy is a true martingale.

2) The function f: R2 — R given by f(t,w) := ez’ cosw is C? and X; = f(t,W;). Moreover
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(t,w) = Ze?' cosw, ——(t,w) = —e2’'sinw, —=
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Since t (viewed as a process) is of finite variation, It6’s formula yields
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ax, = 5 o (b w)dWle = —e3* sin W,dW,

so X is a local martingale. Since supy<,<7|X¢| < e2T for each T' > 0, X is a martingale.

3) Being adapted, left-continuous and bounded, p and /1 — p? are such that the corresponding stochastic
integrals are well-defined. Moreover, for each ¢ > 0, using bi-linearity of [-,:] and the fact that [IW,W'| =0
due to independence of W and W'
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so Lévy’s characterisation of Brownian motion yields that B is a Brownian motion. Finally
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Exercise 2

For any M € M. 1oc(R, F,P), define M} := supg<,<; |[Ms|, for t > 0. Prove that for any ¢ > 0 and positive C, K, we
have

P[M; > C] < 40—[5 +P[[M]; > K].

Recall that for a stopping time 7 and a process (M;);>o the stopped process is defined by (M;)i>0 =
(M;at)i>0. For K > 0, we consider the stopping time oy = inf{¢t > 0: [M]; > K}. Since [M] is continuous,
we have that [M]; < K for ¢t < og, and therefore

EF[[M¥]w] = EF[[M]o] < K.

Hence, M°% € M?(R,F,P). We can therefore apply Tchebycheff’s and Doob’s inequality (and use that

the constant in Doob’s inequality for fixed p > 1, denoted by C,, is equal to (]%)p), obtaining that

p[(a7x); > 0] < B LA BT[]
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To obtain the claim, we observe that
{M7= # M} € {ox <t} ={[M]: > K},

which finally implies that

P[M; > C] =P[M; > C, ox > t] +P[M] > C, ox <t] < %+P[[M]t > KJ.

Exercise 3

Let (Bt)¢>0 be a Brownian motion defined on a probability space (2, F,P). Consider the SDE

1
dXt:<\/1+Xt2+2Xt>dt+\/1+deBt, Xo=2x€R. (0.1)

1) Show that for any « € R, the SDE defined in (0.1) has a unique strong solution.
2) Show that (X;);>0 defined by X, := sinh (arcsinh T+t+ Bt) is the unique solution of (0.1).

1) We see that the SDE is of the form
dXt = G(Xt)dt + b(Xt)dBt, X(] =x €R.

where

a(z) =1+ z22+ g, and b(x) := /1 + a2

We observe that
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as well as
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Thus, from the mean value theorem, we obtain for K := 5 that a(-) and b(-) satisfy the Lipschitz condition
la(y) = a(z)| + b(y) = b(2)| < Kly - 2|, (y,2) € R*.

Moreover, we observe that for any x € R
x z 3
\/1+12+§ < 1+|x|+§ §§(1+|x|), |V/1+ a2 <1+ |zl

Thus we get for any = € R the existence of a unique strong solution directly from the lecture notes.

2) We consider the function f(z) := arsinh(z) € C? (i.e. the inverse function of the hyperbolic sine).

Thus, we obtain that
T

and f”(z) = RETaE

, 1
f(z) = 7@7

Thus, applying It6’s formula to Y; := f(X;), we obtain that
dY; = dt + dBy, Yy = arsinh(x),

which implies that
X, =sinh(Y;) = sinh (arsinh(z + ¢ + By)), t > 0.

Exercise 4

Let B be a Brownian motion defined on some filtered probability space (2, F,F,P) satisfying the usual conditions, and
let us fix three constants (a,b,0) € (0,+00)3, and an initial value ry € R. An Ornstein—Uhlenbeck process r satisfies
the following SDE

t
Ty :7‘0—|—/ (a—brg)ds+ 0By, t > 0.
0

1) Show that
1— e—b(s—t)

re=e 67 4 g 5

—l—/ e_b(s_“)UdBu7 0<t<s.
t

2) Deduce that the P-distribution of rs knowing JF; is Gaussian with mean

1— efb(sft)

m(t, s) = BF [ra| F7F] = 70 4 am——,

and variance

s 2
v(t, s) := Var® [rs|}'tB’P] = 0’2/t e~ 2b(s—) gy, — %b(l _ e—2b(s—t)).

3) Prove the following stochastic Fubini theorem.

Lemma 0.1. Let b and o be two R-valued measurable and F-adapted processes such that for any t > 0

t
/ (bs] + o) ds < +o0.
0

We have for any t > 0
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Deduce from this that

s 1 — e—b(s—1) a a s 1 e bls—u)
/t rydu = b(rt— b) —l—g(s—t)—l—a/t TdBu,

and that the distribution of fts rydu, conditionally on F, is Gaussian with
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4) Finally, prove that the joint distribution, knowing F;, of the vector (rs, fts rydu) is still Gaussian with mean given
by the vector
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1) If we define the process X by X; :=e’r;, for any ¢t > 0, It6’s formula shows that it satisfies
t t
Xi=nro —|—/ e®ads +/ oe?®dB;, t > 0.
0 0
This implies that for any s >¢ >0
X, — X, = a/ e?du + a/ e’ dB,,
t t

and replacing X, and X; by their values
—b(s—t)
b

re=e " 4 g + / e W gdB,.
t

2) Hence, r, given ftB’P, is given as a deterministic function, plus a stochastic integral of a deterministic
function. We know by the lecture notes that the distribution of such a stochastic integral is Gaussian.

We then have
1— e—b(s—t)

m(t, s) = B [rg|F77] = e 0r o,

and

s 2
v(t,s) == Var® [rs‘ff’P] = UQ/ e~ 20(5—u) g, — %(1 _ e—2b(s—t)).
t

3) We apply Ité’s formula for products to obtain

t t t u t s
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from which the result is immediate.

We deduce then that

s 1— efb(sft) a a 1 — e*b(S*u)
/t rydu = b(rt b) +g(sft)+0/t TdBu.

and in particular that the distribution of fts rydu, conditionally on F;, is Gaussian with
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4) Concerning the joint distribution, we have for any (), p) € R?
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which is the characteristic function of bi-dimensional Gaussian random variable with mean given by the
vector
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Exercise 5

Let W = (W;)i>0 be a Brownian motion defined on some filtered probability space (92, F,F,P) satisfying the usual
conditions. Assume that the filtration F is generated by the Brownian motion W. Consider the Tanaka SDE

dXt = Sgl’l(Xt)th, XO = 0,

where sgn(z) denotes the sign function, i.e., sgn(z) := 1 if z > 0, and sgn(z) = —1 if z < 0.



1) Show that the Tanaka SDE has no strong solution.
Hint:

— Assume there exists a strong solution and derive a contradiction.

— You can use the following result (Tanaka’s formula): let X be a continuous semimartingale. There exists a
continuous, non-decreasing adapted process (L¢);>o such that

t
[ X¢| = | Xol :/ sgn(X)dXs + Ly, t > 0.
0

Moreover, it can be shown that L is FI¥I-adapted.

2) Show that the SDE admits a weak solution.

1) By contradiction, suppose that X has a strong solution. Since X is F adapted we have FX C F = FW.
Moreover, since sgn(X.) is adapted and left-continuous, X is a continuous local (F,P)-martingale null at
0 with

X), = / (sen(X,)2d[W), = 1.

0

Therefore, by Lévy’s theorem, X is even an (F,P)-Brownian motion. By definition, we have

W, = / (sgn(X.)) %W, = / sen(X.)dX..

Using Tanaka’s formula we see that W is adapted to FIXI, Hence, we have FX CF =F" C FIX!I which is
clearly a contradiction.

2) To find a weak solution let Q be the Wiener measure on the path space 2 = C[0,00) and X be the
coordinate process such that X is an (F¥ ,Q)-Brownian motion. Moreover, let F be the (augmented)
canonical filtration and define W as

W= / sgn(X;)dXs.
0
As before, using Lévy’s theorem W is an (F,Q)-Brownian motion. Therefore

sgn(X,)dW; = (sgn(X;))?dX; = dX,.



